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1. Introduction 
The recent researches in multi-valued logics usually consider the truth values inside the language by 
assuming, for example, that (a dense subset of) the truth values are represented by corresponding  
propositional constants. So, formulas as 0.4→(α→ 0.3) or  0.1→(0.2→0.3) are admitted. This means 
that, as in classical logic, if F indicate the set of formulas in such a language, then both the available 
information and the derived information are represented by classical subsets of F. This entails an 
approach whose paradigm coincides with the one of classical logic. In particular, the notion of 
effectiveness is inherited from recursion theory in N in spite of fact that the main examples of multi-
valued logics involve the real numbers interval [0,1].  The researches along such a line are in a very 
advanced state and very deep results were discovered (see, for example, Hájek 1998, Gottwald 2000, 
Montagna 2001). Nevertheless, in accordance with Goguen 1968/69 and Pavelka 1979, I am 
interested in a different way to go on in which both the hypotheses (the available information) and the 
related consequences (the derived information) are represented by fuzzy sets of formulas. Indeed, in 
my opinion, this choice gives us major chances to catch the particular nature of a reasoning from 
vague hypotheses as Goguen’s analysis of sorites paradox shows. Moreover, it gives a more 
appropriate way to represent the effectiveness of the inferential processes in multi-valued logic for 
which the notion of endless approximation process have to play a basic role.   
 To introduce the basic notions of fuzzy logic, we can start from the idea that the deduction 
apparatus in a logic is a tool for an effective management of the available information. Then, to define 
a logic we have to specify: 
 1. a set Inf  to represent the pieces of information we have to manage and an order ≤ in Inf  to 

express the completeness of the information 
 2. a “deduction operator”,  D : Inf → Inf  to improve the available information 
 3. suitable properties of effectiveness for the whole system. 
In the case of classical logic the information is completely based on the language. Indeed, an 
elementary piece of information is a formula in F and a piece of information is a subset T of F. The 
information content of T is that at least all the claims in T are truth while no information we have 
about the remaining formulas. Then, Inf is the class P(F) of all the subsets of F and the order is the 
inclusion relation. Once the deduction operator D : P(F)→P(F) is defined, the effectiveness of the 
inferential process is represented by the fact that D is an enumeration operator. So, from a decidable 
set of hypotheses T we derive a recursively enumerable set D(T) of consequences.  
 Passing to fuzzy logic, we will assume that an elementary piece of information is a sentence α in 
a language together with an information (i.e. a constraint) λ on the possible truth value of α.  In other 
words an elementary piece of information is a signed formula (α,λ) and a piece of information is a set 
T ⊆F×L of signed formulas. We emphasize that λ is not the truth value of α but our (incomplete, in 
general) information about the truth value of α. We assume that in the class L of admissible 
constraints there is an order ≤ in such a way that λ1≤λ2 means that the constraint λ2 is stronger than 
the constraint λ1 or, equivalently, that the information λ1 is contained in the information λ2. Also, we 
assume that L is a complete lattice with respect to ≤. Such an hypothesis is necessary to “fuse” 
different pieces of information on the same formula α. This means that if X⊆L is the available set of 
constraints on the actual truth value of α, then λ = Sup(X) is an unique constraint “equivalent” with X. 
If we admit this, then we are able to represent a piece of information in a more workable way. Indeed, 
we can associate any piece of information T with the functional piece v : F →L defined by setting 
v(α) = Sup{λ ∈L : (α,λ)∈T}. In accordance, we will assume that Inf coincides with the lattice LF of 



2 

the L-subsets of F. This gives also a natural order among pieces of information. Also, since this order 
is with respect to the completeness of the information, we accept the hypothesis of monotony, and, in 
accordance, that the deduction operator D is a closure operator in LF.  
 It remains to consider in some way the effectiveness of the inferential process in fuzzy logic and 
the aim of this paper is to face this question. Indeed, we will give a notion of effectiveness (and 
therefore of continuity) for the deduction operator and we will extend the notions of recursive 
enumerability and decidability to the L-subsets. This extend the previous researches (see Gerla 1987, 
Biacino and Gerla 1989) but in this paper we refer to the theory of effective domains as defined, for 
example in Smyth 1977.  
 
2. Based continuous lattices 
In this paper L denotes always a complete lattice with minimum 0 and maximum 1. A subset X of L is 
upward directed, in brief directed, provided that for any x, y∈X there is z∈X such that x≤ z and y≤z. A 
family (xi)i∈I is directed provided that {xi∈L : i∈I} is directed.  
 
Definition 2.1. Let x, y∈L, then we say that x is way below y and we write xáy provided that, for 
every nonempty directed subset A of L  

y ≤ SupA   ⇒  there is a∈A such that x ≤ a. 
 
In the following we list the main properties of such a relation.  
 
Proposition 2.2. For any x and y in L,  
 i) xá y ⇒ x≤y 
 ii)  xá y, x’≤ x  ⇒ x’áy  
 iii)  xá y, y’≥ y ⇒ xáy’ 
 iv)  xá z, záy  ⇒ xáy   (transitivity) 
 v) 0áy 
 vi)   xáz, yáz   ⇒  x∨yáz 
 vii)   xáz1, yáz2  ⇔  x∨yáz1∨z2. 
  
Observe that á is different from ≤, in general.  
 
Definition 2.3. A based continuous lattice, in brief a based lattice, is a structure (L,≤,B) where L is a 
complete lattice and B, the basis, is a subset of L containing 0, closed with respect to ∨ and ∧ and 
such that,  
  x = Sup({b∈B : báx}). (2.1) 
 
As a consequence of the closure of B with respect to ∨ and by Proposition 2.2, any set {b∈B : báx} 
is directed. Observe that usually a basis is defined as a subset B of L such that for any x∈L the set 
{b∈B : báx} is directed and (2.1) is satisfied. Our definition is substantially equivalent. In fact, if B 
is a subset of L satisfying (2.1), then by adding 0 to B and by closing B with respect to ∧ and ∨, we 
obtain a new subset which is a basis in our sense. 
 
Theorem 2.4. (Interpolation theorem).  Let (L,≤B) a based lattice and assume that xáy. Then there 
is b∈B such that xábáy. As a consequence, for any directed family (xi)i∈I, 

y≤Supi∈Ixi ⇒ there is xi such that xáxi. 
 
In the case of chains, the structure of based lattices is very simple. 
 
Proposition 2.5. Let L be a finite chain, then (L,≤,B) is a based lattice if and only if B = L. In such a 
case  

xáy  ⇔  x≤y. 
Let L be complete chain and B a dense subset of L. Then (L,≤,B) is a based lattice such that  

x á y ⇔ either x = 0 or x<y. 
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In particular, let U be the complete lattice defined by the real numbers interval [0,1] and denote by UQ 
= U∩Q the set of rational numbers in U. Then (U,≤,UQ) is a based lattice.  
 
3. Effective lattices, semi-decidable elements 
The notion of effective lattice enables us to give an analogous of the notion of recursively enumerable 
subset. 
 
Definition 3.1. An effective continuous lattice (in brief an effective lattice) is a based lattice (L,≤,B) 
such that there is an enumeration (bn)n∈N of B in such a way that 
- the set {(n,m)∈ N2 : bnábm} is recursively enumerable 
- there are two recursive maps join : N×N→N and meet : N×N→N  such that 

bn∨bm = bjoin(n,m)   ,  bn∧bm = bmeet(n,m). 
 
In brief, an effective lattice is a based lattice such that á is recursively enumerable in B and ∨, ∧ are 
computable in B. In any effective lattice the relation bn≤bm is decidable. In fact 

bn≤bm ⇔ bn∧bm = bn ⇔ bjoin(n,m) = bn ⇔ join(n,m) = n. 
  

Proposition 3.2. Any finite chain L is an effective lattice with respect to the basis L. The interval U is 
an effective lattice with respect to the basis UQ. 
 
Now we are able to give the first main definition in the theory of effective domains. 
 
Definition 3.3. We say that an element x in an effective lattice (L, ≤, B) is semi-decidable if the cut 
{n∈N : bnáx} is recursively enumerable.  
 
In particular, any b∈B is semi-decidable. Since by the interpolation theorem {n∈N : bná1} = {n∈N : 
there is m such that bnábm}, 1 is semi-decidable, too. If L is finite lattices, all the elements are semi-
decidable. If L = U,  x∈U is semi-decidable if and only if {r∈UQ : r<x} is recursively enumerable.  
 
Proposition 3.4. Let (L,≤,B) be an effective lattice, then the following are equivalent: 

 i)  x  is semi-decidable  
 ii) a recursive function f : N →N exists such that (bf(n))n∈N  is a á-chain and  
   x = Supn∈Nbf(n). (3.1) 
 iii)  a recursive function f : N →N exists such that (bf(n))n∈N  is a chain and satisfies (3.1). 
 iv)  a recursive function f:N→N exists such that (bf(n))n∈N is directed and satisfies (3.1). 
 v) a recursive function f : N →N exists such that (bf(n))n∈N  satisfies (3.1). 
 

Proposition 3.5. There is an effective coding w1, w2… for the class Sem(L) of all the semi-decidable 
elements of an effective lattice. Also Sem(L) is a lattice and two recursive maps exist h : N×N→N and 
k : N×N→N such that 

wh(n,m) = wn∨wm   and   wk(n,m) = wn∧wm. 
 
 Proof. Given i ∈N, let ϕi be the partial recursive function with index i. Also, denote by Pr1: N →
N  and Pr2:N→N two computable functions such that (Pr1,Pr2):N→N×N is one-one. Then we define 
ϕ(i,n) by setting  
 - ϕ(i,n) = 0 if ϕi is not convergent in fewer that Pr1(n) steps given the input Pr2(n) 
 - ϕ(i,n) = ϕi(Pr2(n)) otherwise.  
The function ϕ is total recursive and by the s-m-n-theorem there is a recursive function h such that 
ϕ(i,n) = ϕh(i)(n). Moreover range(ϕh(i)) = range(ϕi)∪{0}. We denote by wi the semi-decidable element 
such that wi = Supn∈N )()( nih

bϕ . If x is any semi-decidable element and ϕi  a total recursive function such 

that x = Supn∈N )(ni
bϕ ,  then x = wi. 
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 The second basic definition in effective domain theory is the one of computable function. Recall 
that, given two complete lattices L  and L’, a function f : L→L’ is continuous provided that  

f(SupX) = Supf(X) 
for any directed class X of elements of L. 
 
Definition 3.6. Let (L,≤,B) and (L’,≤,B’) be effective lattices, then a map f : L→L’ is computable 
provided that it is continuous and the relation {(n,m)∈N×N : b’máf(bn)} is recursively enumerable. 
 
As an example, a function f : U → U is computable if and only if f preserves the last upper bounds 
and the relation {(p,q)∈ UQ×UQ : p<f(q)} is recursively enumerable.  
 
Proposition 3.7. Let (L,≤,B) and (L’,≤,B’) be based lattices and f : L→L’ a map, then the following 
are equivalent: 
 i)    f   is continuous. 
 ii)  f(x) = Sup{f(b) : b∈B, báx}. 
Consequently, if  f : L→L’ is a computable function, then 

x semi-decidable ⇒ f(x) semi-decidable. 
  
4. Decidable elements 
To define the notion of decidability we need to dualize some of the notions in the previous sections. 
Given an ordered set (D,≤), we denote by (D,≤d) its dual, i.e. the ordered structure obtained by setting 
x ≤d y provided that x ≥ y. Any order-theoretical notion in (D,≤) is associated with its dual, i.e. the 
same notion interpreted in (D,≤d). As an example, the dual of the notion of upward directed family, is 
the notion of is downward directed family. So (xi)i∈I is downward directed if for any xi, xj there is xt 
such that xt≤xi and xt≤xj. We say that y is way above x and we write xády in the case y is way below x 
in (L,≤d). Then xády provided that, for every downward directed subset A  

x ≥ Inf A ⇒ there is a∈A such that y ≥ a. 
Obviously 

xády ⇒ x≤y 
and, if L is a finite chain,   

xády ⇔ x≤y. 
If L coincides with U, then  

xády  ⇔  either y = 1 or x<y. 
 
Definition 4.1. A structure (L, ≤,B, B) is called a reversible (effective) continuous lattice provided 
that both the structures (L,≤,B) and (L,≤d,B) are based (effective) continuous lattices. In such a case 
we say that B = (bn)n∈N is the basis and B= (bn)n∈N the dual basis of (L, ≤,B, B).  
 
Obviously,  

x = Sup{b∈B : báx} = Inf{b∈B : xádb}, 
for any x∈L. So, in a sense, in a reversible continuous lattice it is possible to approximate any element 
both from below and from above. 
 
Definition 4.2. Given a reversible effective lattice (L, ≤,B, B), we say that x is decidable provided that 
x is semi-decidable both in (L, ≤, B) and (L, ≤d, B), i.e. if both the cuts 

{n∈N : bnáx}   ;  {n∈N : xádbn} 
are recursively enumerable. 
 
Trivially, 0 and 1 are decidable elements in any reversible effective lattice. The proof of the following 
proposition is immediate. 
 
Proposition 4.3. Given an element x of a reversible effective lattice, the following are equivalent: 
i) x is decidable 
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ii) two total recursive functions h : N →N and k : N →N  exist such that (bh(n))n∈N is order preserving, 
(bk(n))n∈N  is order reversing and  

Supn∈Nbh(n) = x =Infn∈Nbk(n). 
iii) a nested, effectively computable sequence ([bh(n), bk(n)])n∈N of intervals exists such that  

{x} = ∩n∈N [bh(n), bk(n)] 
 
An easy way to obtain reversible continuous lattices is by the notion of involution, i.e. a map - : L →L 
such that 
i)     -0 = 1 ;   -1 = 0. 
ii)   -(x∨y) = -x∧-y  ;  -(x∧y) = -x∨-y. 
iii) -(-(x)) = x.  
Observe that an involution is an isomorphism -: L →Ld among L and its dual Ld. 
 
Definition 4.4. A structure (L, ≤, -, B) is an effective lattice with an involution if (L, ≤, B) is an 
effective lattice and - is an involution such that {(n,m)∈N×N : -bná-bm} is recursively enumerable.  
 
Let L = {x1,…,xn} be a finite lattice where 0 = x0<…<xn = 1. Then there is a unique involution defined 
by setting -xi = xn-i. In the case of the interval U, an involution is obtained by setting -x = 1-x. 
 Since an involution is an isomorphism and in accordance with the fact that any isomorphism 
preserves the definable relations, we have the following: 
 
Proposition 4.5. Let L be a lattice with an involution. Then, for any x∈L, 
  xády ⇔ -yá-x. 
 
 Any effective lattice with an involution defines a reversible effective lattice. 
 
Proposition 4.6. Let (L, ≤, B, -) be an effective lattice with an involution and set B = (bn)n∈N where bn 
= -bn. Then (L,≤,B, B) is a reversible effective lattice such that all the elements in B and in B are 
decidable and 

x is decidable ⇔ both x and –x are semi-decidable. 
 
This proposition entails that any finite chain L is a reversible effective lattice in which B = B = L. In 
this lattice all the elements are decidable. The interval U is a reversible effective lattice in which B =B 
= UQ. In this lattice are decidable all the elements x such that both the sections {r ∈ UQ : r < x} and {r 
∈ UQ : x<r} are recursively enumerable, i.e. the decidable elements coincide with the recursive real 
numbers. 
 
5. Direct products 
As observed in the introduction, the pieces of information we have to consider in a fuzzy logic are L-
subsets of formulas, i.e. elements of a direct power of L. This leads to define the notion of direct 
products of effective continuous lattices.  
 
Proposition 5.1. Let (Li,≤i,Bi)i∈S be a family of based lattices. Then we obtain a based lattice 
(Πi∈SLi,≤,B) where (Πi∈SLi,≤) is the direct product of the family ((Li,≤i))i∈I of lattices and  
  B = {f ∈Πi∈SBi : Supp(f) is finite}. (5.1) 
In such a lattice, for any f and g in Πi∈SLi, 
  fág  ⇔  Supp(f) is finite and f(j)ág(j) for any j∈Supp(f). (5.2)  
 
Definition 5.2. Let (Li,≤i,Bi)i∈S be a family of based lattices. Then we call direct product of such a 
family the based lattice defined in Proposition 5.1. If all the elements in the family coincide with the 
lattice (L,≤,B), then we call direct power of (L,≤,B) with index set S such a direct product.  
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Note that the direct product of (Li,≤i,Bi)i∈S as defined in universal algebra is the structure (Πi∈SLi,≤, 
Πi∈SBi) and therefore, in the case S infinite, is different from the just given notion. By dualizing the 
proof of Proposition 5.1, we obtain the proof of the following proposition. 
 
Proposition 5.3. Let ((Li,≤i,Bi, Bi))i∈S be a family of reversible  lattices. Then we obtain a reversible  
lattice (Πi∈SLi,≤,B,B) by assuming that (Πi∈SLi,≤,B) is the direct product of ((Li,≤i,Bi))i∈S and  
  B = {f ∈Πi∈SBi : Cosp(f) is finite}. (5.4) 
In such a lattice,  
  fádg  ⇔  Cosp(f) is finite and f(j)ádg(j) for any j∈S. (5.5)  
 
 The definition of the direct product of a family of effective lattices is a little more complicate and 
we have to confine ourselves only to the uniformly effective families (Li,≤i,Bi)i∈S of effective 
continuous lattices. This means that we have to assume that {(n,m,i)∈ N 3 : bnái bm} is recursively 
enumerable and that two recursive maps join : N×N×N→N and meet : N×N×N→N  exist such that  

b(i,n)∨b(i,m) = bjoin(i,n,m)   ,  b(i,n)∧b(i,m) = bmeet(i,n,m) 
where b(i,n) is the n-element of Bi.  
 
Proposition 5.4. Let S be a set admitting a code, then the direct product of an uniformly effective 
family of continuous lattices (Li,≤i,Bi)i∈S  is an effective continuous lattice.  
  
In accordance with such a proposition, the product of a finite number of effective lattices (L1,≤1,B1), 
(L2,≤2,B2),…,(Lk,≤k,Bk) is an effective lattice with basis B1×…×Bk. Moreover,  

(λ1,…,λk)á(µ1,…,µk)  ⇔  λ1áµ1,…,λkáµk. 
Also, let (L,≤B) be an effective lattice and denote by b(i,j) the j-element in Bi. Then a several variable 
map f : L1×...×Lk →L is computable provided that it is continuous with respect each variable and 
{(n1,n2,...,nk,m)∈Nk×N : bmáf(b(1,n1),...,b(k,nk)} is recursively enumerable.  
 
Proposition 5.5. The composition of computable maps is a computable map. Namely, let h : Lt→L 
and g1 : Lk →L,…, gt : Lk →L be computable maps and let f : Lk →L be the map such that f(x1,…,xk) = 
h(g1(x1,…,xk),…,gt(x1,…,xk)) for any x1,…,xk in L. Then f is computable.  
 
 Analogous definitions and results can be given in the case of the reversible effective lattices and 
in the case of effective lattices with an involution.  
  
6. Effective lattice of the L-subsets of a given set 
Given a set S, we call L-subset of S any element in the direct power LS, i.e. any map s : S →L  from S 
into L. We interpret an L-subset as a generalized characteristic function to represent the extension of a 
vague predicate. The usual interpretation is that L is the set of truth values of a multi-valued logic 
and, for every x∈S, s(x) is the membership degree of x to s. In this paper we are interested also to 
interpret the elements in L as pieces of information about the truth values and therefore to interpret 
s(x) as a constraint on the degree of membership of x to s. So, the usual notion of subset is extended 
into two directions, we admit different levels of membership degree and we admit incomplete pieces 
of information about these membership degree. We denote by ∪ and ∩ the lattice operations in LS, 
i.e. the operations defined by setting, for any s1, s2 ∈LS and  x∈S 

(s1∪s2)(x) = s1(x)∨s2(x)  ; (s1∩s2)(x) = s1(x)∧s2(x).   
In an analogous way we define the infinitary unions and intersections. Given X∈P(S), the 
characteristic function of X is the map cX : S →L  defined by setting cX(x) = 1 if x∈X and cX(x) = 0 
otherwise. We call crisp an L-subset s such that s(x)∈{0,1} for every x∈S and we can identify the 
classical subsets of S with the crisp L- subsets of S via the characteristic functions. Indeed, the map H 
: P(S)→LS defined by setting H(X) = cX for every X∈P(S) is a complete embedding of the lattice 
(P(S), ∪, ∩,∅,S) into the lattice (LS, ∪, ∩, c∅, cS). Given x ∈S and λ≠0, the λ-singleton is the L-
subset {x}λ defined by setting {x}λ(z) = λ if z = x and {x}λ = 0 otherwise. We say that s is finite 
provided that Supp(s) is finite, i.e. s is a finite union of singletons. We say that s is co-finite provided 
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that Cosp(s) is finite. We call finite also the empty set ∅ and co-finite the whole set S. The classes of 
finite and co-finite L-subsets of S are denoted by Fin(LS) and Cof(LS), respectively. Assume that in L 
an involution - : L→L is defined, then we call complement of s the L-subset -s defined by setting (-
s)(x) = -s(x). Obviously, in such a case an L-subset s is finite if and only if –s is co-finite.  
 As a particular case of the propositions in Section 5, we obtain the following ones.    
 
Proposition 6.1. Let (L,≤,B) be an effective lattice and S be a nonempty set admitting a code. Then 
the class LS of L-subsets of S is an effective lattice admitting as a basis the class Fin(BS) of finite L-
subsets of S with values in B. Also, for any s1 and s2 in LS, we have that 

s1 á s2  ⇔  s1 is finite and s1(x)ás2(x) for every x∈S. 
 
Observe that, by definition, an L-subset s is semi-decidable provided that the set  

{n∈N : bnás} = {n∈N : bn(i)ás(i) for any i∈Supp(bn)} 
is recursively enumerable.  
 
Proposition 6.2. Let (L,≤,B,B) be a reversible lattice and S be a nonempty set admitting a code. Then 
LS is reversible with dual basis the class Cof(BS) of co-finite L-subsets of S with values in B. If 
(L,≤,B,-) is with an involution, then LS is an effective lattice with the complement as an involution. 
 
If L is reversible , s is decidable if and only if both the sets  

{n∈N : bn(i)ás(i) for any i∈Supp(bn)}  ; {n∈N : s(i)ádbn(i) for any i∈Cosp(bn)} 
are recursively enumerable. The following is a simple characterization of the semi-decidable and the 
decidable L-subsets. 
 
Proposition 6.3. Let (L,≤,B) be a effective continuous lattice and s∈LS. Then s is semi-decidable if 
and only if its hypograph 
  H(s) = {(x,λ) ∈S×B: λás(x)} (6.1) 
is recursively enumerable. Let (L,≤,B,B) be a reversible effective lattice. Then s is decidable if and 
only if both H(s) and the dual hypograph 
  K(s) = {(x,λ) ∈S×B: s(x)ádλ} (6.2) 
are recursively enumerable. 
 
Proposition 6.4. Let s be a crisp L-subset. Then s is semi-decidable if and only if s is (the 
characteristic function of) a recursively enumerable subset of S. 
 
Proposition 6.5. A continuous map D : LS→LS is computable if and only if the relation λáD(b)(x) is 
recursively enumerable. 
 
 By extending the classical notion of m-reducibility, we say that s1 is m-reducible to s2, and we 
write s1≤ms2, provided that a recursive map h : S→S exists such that, for any x∈S 

s1(x) = s2(h(x)). 
We call universal any maximum with respect to ≤m  in the class of semi-decidable L-subsets. 
 
Proposition 6.6.  The relation ≤m is a pre-order. Assume that s1≤ms2, then 

s2 semi-decidable ⇒ s1 semi-decidable, 
s2 decidable ⇒ s1 decidable. 

Moreover, an universal L-subset exists. 
 

7. The main cases 
In this section we consider some examples which are the basic ones in fuzzy logic. 
 
Proposition 7.1. Let L be a finite chain. Then the class LS of L-subsets of S is an effective lattice with 
an involution and therefore a reversible effective lattice. Its basis is the class Fin(LS) of finite L-
subsets of S, its dual basis is the class Cof(LS) of co-finite L-subsets of S. Also 

s1 á s2  ⇔  s1 ⊆ s2 and s1 is finite 
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and 
s1 á

d s2  ⇔  s1 ⊆ s2 and s2 is co-finite 
 
In particular, the class P(S) of subsets of S is an effective lattice with an involution whose basis is the 
class of finite subsets of S and whose dual basis is the class of co-finite subsets. Also 

XáY ⇔ X ⊆Y and X is finite 
and 

XádY ⇔ X ⊆Y and Y is co-finite. 
 
Proposition 7.2. Let L be a finite chain. Then an L-subset s is semi-decidable if and only if there is a 
recursive function h : S×N→L increasing with respect to the second variable such that 
  s(x) = Maxn∈Nh(x,n). 
An L-subset s is decidable if and only if s is a computable function from S to L.  
 
Proposition 7.3. Let L be a finite chain. Then, the following are equivalent: 
i)   s is a recursively enumerable L-subset 
ii) all the closed cuts C(s,λ) = {x∈S : s(x)≥λ} are recursively enumerable 
iii) all the open cuts O(s,λ) = {x∈S : s(x)>λ} are recursively enumerable.  
 
The following corollary shows that, in the case of a finite chain L, the proposed notion of semi-
decidable is the only possible extension of the classical one such that  
- the constant L-subsets are semi-decidable  
- the union of two semi-decidable L-subsets is semi-decidable 
- the intersection of two semi-decidable L-subsets is semi-decidable.  
 
Corollary 7.4. Let L be a finite chain, then the lattice of the semi-decidable L-subsets is the lattice 
generated by the recursively enumerable subsets and the constant L-subsets. 
 
Now we will examine the case L = U.  In such a case we call fuzzy subsets of S the U-subsets.  
 
Proposition 7.5. The class of fuzzy subsets of S is an effective lattice with the complement as an 
involution. The basis is the class Fin(UQ 

S) of finite fuzzy subsets of S with rational values. The dual 
basis is the class Cof(UQ 

S) of co-finite fuzzy subsets of S with rational values. Moreover 
s1 á s2  ⇔  s1(x) < s2(x) for every x ∈ Supp(s1) and s1 is finite. 

s1 á
ds2  ⇔  s1(x) < s2(x) for every x ∈ Cosp(s2) and s2 is co-finite. 

 
As the following proposition emphasizes, the proposed notions of semi-decidability and decidability 
for fuzzy subsets are in accordance with the definitions given in Biacino and Gerla 1989.  
 
Proposition 7.6. A fuzzy subset s is semi-decidable if and only if there is a recursive function h : S×N
→UQ increasing with respect to the second variable such that 
  s(x) = Supn∈Nh(x,n). 
A fuzzy subset s is decidable if and only if there is a nested computable sequence ([h(x,n), k(x,n)])n∈N 
of intervals such that 
  {s(x)} = ∩n∈N[h(x,n), k(x,n)]. 
 
8. Effective inferential apparatus in fuzzy logic 
Let F be a nonempty set whose elements we call formulas and V be a complete lattice whose elements 
we interpret as truth values. Then an abstract V-semantics, in brief a semantics, is a class M of V-
subsets of formulas. We call a model or an interpretation any element m in M and we interpret m(α) 
as the truth value of α in m. As an example, we can assume that M is the set of truth-functional 
valuations of a multi-valued logic. We call constraint frame any closure system in V, i.e. any class L 
of subsets of V which is closed with respect to the intersections and containing V. Given X ⊆V, we 
denote by <X> the element in L “generated” by X, i.e. the intersection of all the elements in L 
containing X. We consider L as a complete lattice with the reverse of the inclusion relation. This since 
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the order we are interested in is with respect to the information content. In L the join of a family 
(Xi)i∈I is the intersection ∩i∈IXi and the meet is <∪i∈IXi>. Given an L-subset s of formulas, we say that 
m∈M is a model of s, in brief m £s, provided that m(α)∈s(α) for any α∈F. In other words, m is a 
model of s provided that for any formula α the truth value m(α) of α in m satisfies the constraint s(α). 
Two L-subsets of formulas are logically equivalent provided that they have the same models. We can 
associate any model m with an L-subset of formulas τm obtained by setting τm(α) = <{m(α)}>. 
Trivially, m £ s if and only if τm≥s. Any L-semantics defines a logical consequence operator Lc : LF→
LF obtained by setting 

Lc(s)(α) = ∩{τm(α) : m £ s} = ∩{τm(α) : τm ≥ s}. 
The proof of the following proposition is immediate. 
 
Proposition 8.1. Lc is a closure operator, i.e.  

i)  Lc(s) ⊇ s   ;   ii)  s1 ⊆ s2 ⇒ Lc(s1) ⊆ Lc(s1)    ;    iii)   Lc(Lc(s)) = Lc(s). 
The intersection of a family of theories is a theory. Moreover, two L-subsets of formulas s1 and s2 are 
logically equivalent if and only if Lc(s1)=Lc(s2). 
 
We interpret an L-subset s of formulas as a L-subset of hypotheses (the available information), and 
Lc(s) as the L-subset of consequences from s. We call theory any fixed point of Lc. Then, for any s, 
Lc(s) is a theory, we call the theory generated by s. For any model m, τm is an example of a theory.  
 
Definition 8.2. Let V be a complete lattice, and L be a constraint frame. Then a abstract deduction L-
system is a pair (LF,D) where D is a continuous closure operator.   
 
A more adequate definition of deduction system taking in account of the effectiveness of the 
inferential processes is the following one. 
 
Definition 8.3. Let V be a complete lattice and L be a constraint frame in V such that (L,≤,B) is an 
effective lattice with respect to a suitable basis B. Then an effective abstract deduction L-system is an 
abstract deduction system (LF,D) such that D is computable in the effective lattice (LF,≤,Fin(BF)). An 
effective L-logic is a structure (LF,D,M) such that M is an abstract L-semantics and (LF,D) is an 
effective abstract deduction L-system such that D = Lc. 
 
In this paper we are not interested in the semantics part of the L-logics and therefore we concentrate 
our attention on the effective deduction systems. If we interpret the relation bás as b is a 
manageable piece of information of s, then, the continuity and the computability hypotheses means 
that the theory generated by s is obtained in an effective way from manageable pieces of information 
in s. This means that, if we call axiomatizable a theory τ generated by a semi-decidable L-subset of 
hypotheses, then the following holds true. 
   
Theorem 8.4. Let (LF,D) be a deduction L-system. Then any axiomatizable theory is semi-decidable.  
 
Such a theorem looks be a reason in favour of a domain-based theory of computability for fuzzy 
logic. Note that, in accordance with Gerla 2001, given a multi-valued logic we can define the L-subset 
taut : F →L of tautologies (the a-priori constraints on the truth values of the formulas, in a sense). 
Then, in the case such a logic is axiomatizable, tau is semi-decidable. Nevertheless, this does not 
entails that the set {α∈F : tau(α) = 1} of “tautologies” is semi-decidable. Indeed, as a matter of fact, 
the following proposition holds true which is an immediate consequence of basic and well known 
results in literature (see Scarpellini 1962, Hájek 1998, Montagna 2001). 
 
Theorem 8.5 A subset of S is a closed cut of a recursively enumerable fuzzy subset iff it belongs to 
the Π2-level of the arithmetical hierarchy. 
      
 The following proposition emphasizes the logical interpretation of the deduction L-systems. 
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Proposition 8.6. An abstract deduction L-system (LF,D) is effective if and only if there is a recursive 
(recursively enumerable) relation b ¢π

λ
 α where b∈Fin(BF), π∈N, α∈F and λ∈B, such that 

  b ¢π
λ

 α , b ¢π'
λ'

 α  ⇒  there is π" such that b ¢π"
λ∨µ

 α (8.2) 
and  
  D(s)(α) = Sup{λ∈B : there is bás and there is π∈N such that b ¢π

λ
 α}. (8.3) 

        
We interpret an element π ∈N as the code number of a proof in a deduction apparatus and the 
recursive relation b ¢π

λ
 α as “π is a proof from b that α satisfies the constraint λ ”. This justifies 

condition (8.2). The recursiveness of the relation b’ ¢z
λ

 α expresses the fact that we are able to decide 
if something is a proof of a formula α from a finite piece of hypotheses and also to calculate the 
information λ  given by such a proof.  
 
9. Hilbert deduction systems. 
The following is a less abstract definition of deduction apparatus for a fuzzy logic (see for example 
Gerla 2000). 

  
Definition 9.1. Let L be a complete lattice. Then an Hilbert L-system is a pair S = (a, INF) where a : 
F→L is an L-subset of F, the L-subset of logical axioms, and INF is a set of L-inference rules. In turn, 
an L-inference rule is a pair r = (r',r"), where  
 - r' is a partial n-ary operation on F whose domain we denote by Dom(r), 
 - r" is an n-ary operation on L which is continuous in each variable, i.e. 
  r"(x1,..., x, ..., xn) = Sup{r"(x1, ...,x', ..., xn) : x' áx}. (9.1) 
 
In other words, an inference rule r consists  
  - of a syntactical component r' that operates on formulas (i.e. an inference rule in the usual sense), 
  - of a valuation component r" that operates on constraints on the truth-values to calculate how we 
can obtain information about the conclusion from the available information on the premises (see [12], 
[27] and [18]).  
A proof π of α is a sequence α1,...,αm of formulas such that αm = α together with a sequence of related 
"justifications”. This means that, given any formula αi, we must specify whether 
  (i)    αi is assumed as a logical axiom; or 
  (ii)   αi is assumed as an hypothesis; or 
  (iii)  αi is obtained by a rule  (we have to indicate also the rule and the formulas used to obtain αi).  
Differently from the crisp case, the justifications are necessary since different justifications of the 
same formula give rise to different pieces of information. Let s an L-subset of formulas. Then the 
constraint Val(π,s) furnished by π on the truth value of α (given s) is defined by induction by setting 
 
                          a(αm)                                       if  αm is assumed as a logical axiom, 
      Val(π,s) =    s(αm)                                       if  αm is assumed as an hypothesis, 
                          r"(Val(πs(1),s),…,Val(πs(n),s))  if  αm = r'(αs(1),…, αs(n)) 
 
where πi denotes the proof α1,...,αi. Now, it should be possible to find another proof π' of α such that 
Val(π',v) > Val(π,v). This happens, for instance, if the assumptions used in π' are more informative 
than the assumptions used in π. In other words, unlike the usual Hilbert systems, different proofs of a 
same formula α can give different pieces of information on α. This suggests that, given an L-subset s 
of hypotheses (the available information), in order to evaluate α we must refer to the whole set of 
proofs of α. 
 
Definition 9.2. Given an Hilbert L-system S, we call deduction operator associated with S the 
operator D : LF→LF defined by setting,  
  D(s)(α) = Sup{Val(π,s) : π  is a proof of α}, (9.2) 
for every L-subset s of formulas and every formula α. 
 
The intended meaning is that D(s)(α) is the best “constraint” on the actual truth value of α we can 
draw from s.  
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Proposition 9.3. The deduction operator D of an Hilbert L-system is a continuous closure operator. 
Therefore any Hilbert L-system is associated with an abstract deduction L-system (LF,D).  
 
It is interesting to observe that τ is a theory of (LF,D) if and only if τ contains the L-subset of logical 
axioms and it is closed with respect to any inference rule r, i.e.  

τ(r'(α1,...,αn)) ≥ r"(τ(α1),...,τ(αn)) 
for any (α1,...,αn)∈Dom(r). Since we are interested only on the operator D, it is not restrictive to 
assume that in an Hilbert system there is a fusion rule, i.e. a rule r = (r’,r”) such that  

Dr = {(α,α): α∈F}  ;  r’(α,α) = α  ;  r”(λ1,λ2) = λ1∨λ2. 
This rule enables us to fuse two proofs π1 and π2 of a formula α into a new proof π obtained by 
concatenating π1 with π2 in such a way that Val(π,s)=Val(π1,s)∨Val(π2,s). This entails that the set 
{Val(π,b) : π  is a proof of α} is directed. Also, observe that if s⊇a, then we can confine ourselves 
only to the proofs in which there is no formula assumed as a logical axiom. 
 In this paper we will consider a notion of Hilbert L-system taking in account of the effectiveness 
of the inferential processes.  
 
Definition 9.4. An Hilbert L-system S = (a, INF) such that INF is finite is effective provided that: 
 (a)   any inference rule r = (r',r") is computable, i.e. Dom(r) is decidable, r' is recursive in D and r" is 
computable in each variable 
 (b)   the L-subset a of logical axioms is semi-decidable. 
 
Proposition 9.5. The deduction operator D of an effective Hilbert L-system S is a computable closure 
operator. Therefore any effective Hilbert L-system is associated with an effective abstract deduction 
L-system (LF,D).  
 
In Biacino and Gerla 2002 one proves the converse of Proposition 9.3 and Proposition 9.5 in the case 
L = U. Therefore the abstract approach to fuzzy deduction is equivalent with the approach based on 
the Hilbert systems.  
 
Proposition 9.6. Assume that L = U. Then any abstract (effective) deduction L-system is the 
deduction system of a suitable (effective) Hilbert L-system.  
 
10. Deduction systems by interval-constraints 
In Section 9 the lattice L is a class of constraints on the truth values of the formulas. A simple 
example is the following one. Let V be an effective lattice whose elements we interpret as truth values 
of a multi-valued logic. Then we set L equal to the class of closed interval in V, i.e., 

I(V) = {[a,b] : a,b∈V, a≤b}∪{∅}. 
In such a way we are able to consider a signed formula as (α,[0.3,0.5]) to represent the information 
“the truth value of α lies between 0.3 and 0.5”. Different choices are possible, obviously. As an 
example, should be interesting also to consider constraints, as 

- the probability that the truth value of α is 0.7 is 0.8 
- it is possible at degree 0.8 that the truth value of α is 0.7. 

Obviously, in (I(V),≤) we have that, 
[a,b]≤[c,d] ⇔ [a,b]⊇[c,d] ⇔ a≤c and b≤d ⇔  a≤c and b≤dd. 

  ([xi,yi])i∈I  upward directed  ⇔ (xi,)i∈I upward directed and (yi)i∈I
  downward directed. 

  ([xi,yi])i∈I downward directed  ⇔ (xi,)i∈I downward directed and (yi)i∈I
  upward directed. 

The maximum is ∅ and the minimum is [0,1] while the maximal elements are the intervals [x,x] = 
{x}. In particular, if V is a finite chain, 

[a,b]á[c,d] ⇔ a≤c  and  b≥d ⇔ [c,d]⊆ [a,b] ⇔ [a,b]≤[c,d], 
If V = U, we have to distinguish several cases. Indeed, we have that [0,1]á[0,1],  

[0,b]á[0,d]   ⇔  d<b  ⇔  [0,b)⊇[0,d] 
[a,1]á[c,1]  ⇔  a<c  ⇔  (a,1]⊇[c,1] 

and, in the remaining cases, 
[a,b] á [c,d] ⇔ a<c  and  b>d  ⇔ (a,b) ⊇ [c,d]. 



12 

 
Proposition 10.1. Assume that (V,≤,B,B) is an effective reversible lattice and set  

I(B,B) = {[x,y] : x∈B, y∈B}. 
Then (I(V),≤, I(B,B)) is an effective lattice such that, for any pair of nonempty intervals [a,b] and 
[c,d], 
  [a,b] á [c,d] ⇔ aác  and  dádb. (10.1) 
 
Proposition 10.2. Let (V,≤,B,B) be an effective reversible lattice and (I(V),≤,I(B,B)) be the associated 
effective lattice. Then the following are equivalent: 
i)   the interval [a,b] is semi-decidable 
ii)  a is semi-decidable and b co-semi-decidable. 
iii)  a nested, effectively computable sequence ([bh(n), bk(n)])n∈N of intervals exists such that  

[a,b] = ∩n∈N [bh(n), bk(n)] 
iv) an effectively computable sequence ([bh(n), bk(n)])n∈N of intervals exists such that  

[a,b] = ∩n∈N [bh(n), bk(n)] 
v) two total recursive functions h : N →N and k : N →N  exist such that (qh(n))n∈N is order preserving, 
(qk(n))n∈N  is order reversing and  

a =Supn∈Nbh(n)  ;   b =Infn∈Nbk(n). 
vi)  two total recursive functions h : N →N and k : N →N  exist such that   

a =Supn∈Nbh(n)  ;   b =Infn∈Nbk(n). 
 
In particular, we have that a degenerate interval {x} is semi-decidable in (I(V),≤,I(B,B)) if and only if 
it is decidable in (L,≤,B,B). If V=U, then [a,b] is semi-decidable if and only if a it limit of a increasing 
computable sequence of rational number and b is limit of a decreasing computable sequence of 
rational numbers. 
 Now, we are able to propose the main definitions in this paper where we identify any element λ 
of V with the one-element interval [λ]. 
 
Definition 10.3. Let V be an effective reversible lattice whose elements are interpreted as truth values 
for a multi-valued logic. Then we call effective abstract interval-based V-logic any effective abstract 
logic (I(V)F,D,M) where M⊆VF.   
 
Observe that in a very large class of L-logics we can consider the complete lattice I+(V) = {[λ,1] : 
λ∈V} instead of I(V). A basic advantage of I+(V) is that it is isomorphic with V via the map f : V→
I+(V) defined by setting f(λ) = [λ,1]. In accordance, in the sequel we denote by λ the interval [λ,1] and 
we refer to V instead of I+(V). We emphasize that, in spite of the isomorphism, the intended 
interpretations of these lattices are different. 
 
Definition 10.4. Let (V,≤,B, -) be an effective lattice with an involution and assume that a suitable 
computable map ¬ : F→F is defined. Then we say that a semantics M is balanced provided that 

m(¬α) = -m(α) 
for any m∈M and α∈F.  
  
The following proposition shows that in the case of balanced semantics the lattice I+(V)  has the same 
expressive power than I(V).   
 
Proposition 10.5. Let M be a balanced semantics, then, for any I(V)-subset s of formulas there is a 
logically equivalent I+(V)-subset of formulas s+ . 
 
Definition 10.6. We call effective abstract lower-constraints V-logic, in brief lower-constraints V-
logic, any effective abstract logic (I+(V)F,D,M) whose semantics is balanced. 
 
In such a logic we say that α is decidable in a theory τ  provided that τ(¬α) = -τ(α).  
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Proposition 10.7. In a lower-constraints V-logic the following are equivalent 
i)    τ is a model 
ii)    τ is a complete theory 
iii)   any formula is decidable in τ. 
 
The choice of considering I+(V) is the one usually adopted by fuzzy logic and it is shared by classical 
logic. In fact, in classical logic in representing the available information by a set T of formulas (the 
set of proper axioms), it is intended that the formulas in T are true and that no information we have 
about the remaining formulas. If we will claim that a formula α is false, then we put in T its negation 
¬α. So, in terms of constraints on the truth values of the formulas, we admit only signed formulas as 
(α,[1,1]) = (α,{1}), claiming that the truth value of α is 1, and (α,[0,1]) = (α,{0,1}), claiming that we 
have no information about the truth value of α. This means that we identify T with the map s : F→
{{1},{0,1}} defined by setting v(α) = {1}  if α∈T and v(α) = {0,1} otherwise.  
 
11. Decidable theories, complete theories: some difficulties. 
A basic property in classical logic is that any axiomatizable and complete theory is decidable. Now, 
there is a natural definition of completeness for an abstract logic. Indeed, we can call complete any 
theory τ which is maximal in the class of theories. This means that we cannot extend τ in a consistent 
way by adding new information. As an example, in the case of I(V) this is attained by assuming that, 
for any formula α, τ(α) is a one element interval, i.e., a truth value of α. Instead it is rather difficult to 
give the notion of decidable theory. For example, in I(V)F this is not possible since we cannot define 
in I(V)F a structure of reversible  lattice, in general.  
 
Proposition 11.1. The lattice (I(V),≤) is reversible if and only if V is a finite chain. It is possible to 
define in (I(V),≤) an involution if and only if V = {0,1}. 
 
A way to face this difficulty is to confine ourselves to logics with a negation. In fact in such a case we 
refer to the lattice I+(V) and, due to the isomorphism with V, such a lattice is an effective lattice with 
an involution.  
 
Theorem 11.2. Let τ be an axiomatizable and complete theory in a logic with a negation based on 
I+(V). Then τ is decidable. 
 
This solution is not completely satisfactory. In fact, there are several interesting multi-valued logic 
which are not “with a negation” in the sense proposed in this paper. Moreover, also in the case of 
logic with a negation (in particular in classical logic) in considering I+(V) we confine ourselves to 
manage only “positive” information. Instead, in my opinion, should be interesting to examine the 
possibility of a symmetric approach to deduction in which both positive and negative information is 
managed.  
 A further tentative to give an answer to this question is suggested by bilattice theory. Indeed, 
consider the product of a lattice (V,≤) with its dual (V,≤d), i.e. the complete lattice B(V) = (V×V, ≤t) 
where 

(x,x') ≤t (y,y')  ⇔  x≤y and x'≥y'. 
In this lattice the minimum and the maximum are (0,1) and (1,0), respectively. The intended 
interpretation is that we assign to a statement α the value (x,y) ∈ B(V) provided that x is (a measure of) 
the degree of belief in α  and y is (a measure of) the degree of disbelief in α. In particular, the pair 
(0,0) indicates we have no evidence both for and against α (no information), (1,0) that α is true, (0,1) 
that α is false, (1,1) that we are in the inconsistent situation of having full evidence both for and 
against α. The related lattice operations are defined by setting, for any x, x', y, y', z, z' ∈V,   
  (x,x')∧(y,y') = (x∧x',y∨y'),    (x,x')∨(y,y') = (x∨x',y∧y'). 
There is some formal connection between the lattices (V×V, ≤t) and (I(V),≤). Indeed, consider the map 
h : I(V)→V×V defined by setting h(∅) = (1,0) and h([a,b]) = (a,b) if a≤b. Then h is an embedding of 
(I(V),≤) into (V×V, ≤t). Nevertheless, the meaning of the elements in (I(V),≤) is totally different from 
the meaning of the corresponding elements in (V×V, ≤t). As an example, while in (I(V),≤) the interval 
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[0,1] represents the absence of information, in B(V) the pair (0,1) represents the false truth value. The 
interest of B(V) is that we can define an involution ∼ in a natural way by switching the roles of belief 
and disbelief, i.e. by setting ∼(x,x') = (x',x). 
  
Proposition 11.3. Assume that (V,≤,B,B) is a reversible effective lattice and set B× = B×B. Then (V×V, 
≤t,B×) is an effective lattice admitting ∼ as an involution. Also  
(x,y) semi-decidable in (V×V,≤t,I(B)) ⇔ x semi-decidable and y is co-semi-decidable in (V,≤,B),  
(x,y)  decidable in (V×V, ≤t,I(B))  ⇔  x and y are both decidable in (V,≤,B). 
 
Such a proposition show that we can define fuzzy logics based on (V×V, ≤t,B×) and, in accordance, to 
define a notion of decidable theory. Future works include an examination of such a possibility. 
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